Second Law of Thermodynamics and Entropy

Contributed by:
Jonathan James
The second law, Entropy, Entropy changes
1. Second law of Thermodynamics
•A gas expands to fill the available volume.
•A hot body cools to the temperature of its
•A chemical reaction runs in one direction rather
than another.
The direction of change that does not require work
to be done to bring the change about is called
spontaneous direction of change.
Internal energy lets us access whether a change is
permissible. Only those changes occurs for which the
internal enegy of an isolated system remains constant.
2. Is it perhaps the internal energy that tends toward
minimum for a spontaneous process?
System
dU<0
dU>0
Surroundings
Perfect gas expands spontaneously into vaccum. dU=0
3. No process is possible in which the sole
result is the absorption of heat from a
reservoir and its complete conversion into
4. A ball bouncing on the floor
A ball resting on the warm surface.
5. Entropy is measure of randomness/ chaosness.
Total entropy of the system and its surroundings
increases in the course of a spontaneous change.
6. Thermodynamic definition of entropy.
dqrev
dS 
T
For a spontaneous change,
dSTotal  0
dS sys  dS surr  0
dqsys ,rev
dS sys 
Tsys
dqsurr ,rev
dS surr 
Tsurr
7. dq surr , rev
dS surr 
Tsurr
Since Surroundin g consists of reservoir
of constant volume.
dq surr dU surr
Since U is a state function.
dU surr , rev dU surr ,irr
 dq surr , rev dq surr ,irr dq surr
dq surr , rev dq surr
dS surr  
Tsurr Tsurr
8. T1,V1,p1 T1,V2,p2
A
T B
C
T2,V2,p3
V
(A) Isothermal process :
dV
dq A  dw A  pdV  RT
V
dq A V2
T  R ln
V1
(B) Isochoric (Const. V) process
w 0, dq dU CV dT
dq B dT T2
T  CV CV ln
T T1
(C)Adiabatic process
dq
dqC 0;  T C 0
R
T1  V2  CV T1 V2
Also, 
 V   CV ln  R ln
T2  1  T2 V1
dq dq dq V T
 T A   T B   T C R ln V12  CV ln T12 0
9. T2,V2,p1
B
T C
A
T1,V1,p1 T1,V2,p2
(A) Isothermal process : V
dV
dq A  dwA  pdV  RT
V
dq A V2
T  R ln
V1
(B) Isochoric (Const. V) process
w 0, dq dU CV dT
dq B dT T2
T CV CV ln
T T1
(C)Isobaric process
dqC dH T1
T  T  C P ln
T2
V2 T
Also,  2
V1 T1
dq A dq B dqC V2 T2 T1
T  T  T  R ln  CV ln  C P ln
V1 T1 T2
dq T2 T1
 T  R ln  (C p  CV ) ln 0
T1 T2
10. dqrev VA VC
 nR ln  nR ln
T VB VD
For Process 2
VC TcC VBThC (i)
For process 4
V AThC VDTcC (ii)
Multiplication of (i) and (ii) gives
V AVC ThC TcC VBVDThC TcC
VA V
  D
VB VC
dqrev VA VC
 nR ln  nR ln 0
T VB VD
11. A Isothermal
nt V
Consta
B
P Adiabatic
C
D Constant P
V
12. Clausius inequality theorm
dS sys  dS surr 0
dS sys  dS surr
dq
dS sys 
T
If the system is isolated,
dq 0
 dS sys 0
The entropy of an isolated system
increases in the course of a spontaneous
Entropy change for a reversible process
dqsys  dqsurr
dS sys  dS surr
 dS sys  dS surr 0
13. From first law of thermodynamics,
dq dU  dw
d ( H  pV )  dw
dH  pdV  Vdp  pdV
dH  Vdp
 H   H 
dq   dT  
 p  dp  Vdp

 T  P  T
 H    H  
dq   dT  

 
  V  dp

 T  P   p  T 
dq 1  H  1   H  
   dT  


 
  V  dp

T T  T  P T   p  T 
From thermodynamic equation of state
 H  V 
 p
   T   V
 T  T  P
1  H   V 
 dS    dT    dp
T  T  P  T  P
Cp  V 
 dT    dp
T  T P
14. From first law of thermodynamics,
dq dU  dw
 U   U 
dq   dT    dV  pdV
 T V  V T
 U    U  
dq   dT  
    p  dV

 T V  V T 
dq 1  U  1   U  
   dT  
    p  dV

T T  T  V T   V  T 
From thermodynamic equation of state
 p   U 
T     p
 T  V  V  T
1  U   p 
 dS    dT    dV
T  T  V  T  V
C dT  p 
 V   dV
T  T  V
15. Entropy changes in a Reversible process
(a) Phase change :
Phase change is always a reversible process.
liquid (T, P)  vapour (T, P)
dq rev , sys dq p dH
dS sys   
T T T
H
S sys 
T
dq surr  dq rev , sys  dH
dS surr   
T T T
 H
S surr 
T
STotal S sys  S surr 0
Trouton' s Rule :
 vap H 
Tb 85 JK  1mol  1 
16. Heating or Cooling process
Heating and cooling can be carried
out reversibly.
CV dT  p 
dS sys    dV
T  T  V
At constant volume,
C dT
dS sys  V
T
Tf
S sys CV ln
Ti
Cp  V 
Also, dS sys  dT    dp
T  T  P
At const. Pressure,
Cp
dS sys  dT
T
Tf
S sys C p ln
Ti
17. CV dT
dS sys 
T
Tf
S sys CV ln
Ti
18.
19. Isothermal process for an ideal gas
Reversible process :
CV dT  p 
dS sys    dV
T  T  V
At constant Temperatur e,
 p 
dS sys   dV
 T  V
nR
dS sys  dV
V
V2
S sys nR ln
V1
V2
S surr  nR ln
V1
For an irreversible process,
dqrev V2  wrev
dS sys  nR ln 
T V1 T
dq surr  dq sys w p (V2  V1 )
dS surr     ext
T T T T
20. Adiabatic Processes for an ideal gas
 dq sys
dS surr 
T
Since, in an adiabatic process,
dq sys 0
S surr 0
(a) Reversible process :
dq sys , rev dq sys
dS sys   0
T T
(b) Irreversible process :
dq sys , rev dq sys
dS sys  
T T
For an ideal gas,
Vf Tf ,irrev
S sys  R ln  CV , m ln
Vi Ti
Tf , rev Tf , irrev
S sys  CV , m ln  CV , m ln
Ti Ti
Tf ,irrev
S sys CV , m ln
Tf , rev
21. Entropy changes in irreversible Processes
To obtain the change in entropy in an irreversible
process we have to calculate S along a reversible
path between the initial state and the final state.
Freezing of water below its freezing point
Irrev
H2O( l , -10 °C) H2O( s , -10 °C)
H2O( l , 0°C) H2O( s , 0 °C)
273 H crys 263
S Cliq ln   Cice
263 T 273
22. Absolute entropy of a substance
Tf C p ( s ) dT  f H
S (T ) S (0)   
0 T Tf
Tb C p (l ) dT v H
  
Tf T Tb
T C p ( g ) dT
 Tb T
Third law of thermodynamics:
The entropy of each pure element or substance in a
perfectly crystalline form is zero at absolute zero.
23. Spontaneous process
dS sys  dS surr 0
dS sys  dS surr
dq
dS sys 
T
dq  TdS 0
At constant volume, no additional work
dqv  TdS 0
dU  TdS 0
dSU ,V 0 or
dU S ,V 0
At constant V and T
dU  TdS dU  d (TS )
d (U  TS )V ,T 0
d ( A)V ,T 0
A is called helmholtz free energy.
24. dS sys  dS surr 0
dS sys  dS surr
dq
dS sys 
T
dq  TdS 0
At constant pressure, no additional work
dq p  TdS 0
dH  TdS 0
dS H , p 0 or
dH S , p 0
At constant P and T
dH  TdS dH  d (TS )
d ( H  TS ) P ,T 0
d (G )V ,T 0
G is called Gibb' s free energy.