Contributed by:

This pdf contains:-

SSS (Side Side Side)

SAS (Side Angle Side)

ASA (Angle Side Angle)

AAS (Angle Angle Side)

RHS (Right angle Hypotenuse Side)

SSS (Side Side Side)

SAS (Side Angle Side)

ASA (Angle Side Angle)

AAS (Angle Angle Side)

RHS (Right angle Hypotenuse Side)

1.
CONGRUENT TRIANGLES

2 Triangles are CONGRUENT if they have:

Corresponding SIDES congruent(same length)

Corresponding ANGLES congruent (same degree measure)

**We don’t have to know all 3 sides and all 3 angles…just

3 out of the 6 is enough**

Congruent polygons have the EXACT same size and shape.

They may slide, flip, or turn to fit exactly on top of the

other one.

2 Triangles are CONGRUENT if they have:

Corresponding SIDES congruent(same length)

Corresponding ANGLES congruent (same degree measure)

**We don’t have to know all 3 sides and all 3 angles…just

3 out of the 6 is enough**

Congruent polygons have the EXACT same size and shape.

They may slide, flip, or turn to fit exactly on top of the

other one.

2.
There are 5 methods to prove triangles

3.
SSS Postulate

The Side Side Side postulate (often abbreviated as SSS) states that if

three sides of one triangle are congruent to three sides of

another triangle, then these two triangles are congruent.

The Side Side Side postulate (often abbreviated as SSS) states that if

three sides of one triangle are congruent to three sides of

another triangle, then these two triangles are congruent.

4.
SAS Postulate

• The Side Angle Side postulate (often abbreviated as SAS) states that if

two sides and the included angle of one triangle are congruent to two

sides and the included angle of another triangle, then these

two triangles are congruent.

• EX:

• The Side Angle Side postulate (often abbreviated as SAS) states that if

two sides and the included angle of one triangle are congruent to two

sides and the included angle of another triangle, then these

two triangles are congruent.

• EX:

5.
ASA Postulate

• The Angle Side Angle postulate (often abbreviated as ASA) states that

if two angles and the included side of one triangle are congruent to

two angles and the included side of another triangle, then these

two triangles are congruent.

• EX:

• The Angle Side Angle postulate (often abbreviated as ASA) states that

if two angles and the included side of one triangle are congruent to

two angles and the included side of another triangle, then these

two triangles are congruent.

• EX:

6.
AAS

• The AAS Theorem. The angle-angle-side Theorem, or AAS, tells us that if

two angles and any side of one triangle are congruent to two angles and

any side of another triangle, then the triangles are congruent.

• http://study.com/academy/lesson/the-aas-theorem.html

• EX:

• The AAS Theorem. The angle-angle-side Theorem, or AAS, tells us that if

two angles and any side of one triangle are congruent to two angles and

any side of another triangle, then the triangles are congruent.

• http://study.com/academy/lesson/the-aas-theorem.html

• EX:

7.
HL Theorem

• And then there's the hypotenuse leg theorem, or HL theorem.

This theorem states that 'if the hypotenuse and one leg of a right

triangle are congruent to the hypotenuse and one leg of another right

triangle, then the triangle are congruent.’

• http://study.com/academy/lesson/the-hl-theorem.html

• EX:

• And then there's the hypotenuse leg theorem, or HL theorem.

This theorem states that 'if the hypotenuse and one leg of a right

triangle are congruent to the hypotenuse and one leg of another right

triangle, then the triangle are congruent.’

• http://study.com/academy/lesson/the-hl-theorem.html

• EX: