First Law of Thermodynamics: Open System

Contributed by:
Jonathan James
Turbines, Compressors, Heat exchangers
1. Chapter 4
The First Law of
Control Volume:
Part 3
Assoc.Prof.Dr.Sommai
Priprem
รศ.ดร.สมหมาย ปรีเปรม
2. 4.3.4 Turbines
 Turbine: Enthalpy  Shaft work
 Used in
 Almost all power plants
 Some propulsion systems (e.g.,
turbofan and turbojet engines)
 Working Fluid:
 Liquids (e.g., hydro power plants)
 Vapors (e.g., steam power plants)
 Gases (e.g., gas power plants) w
Turbine
รศ.ดร.สมหมาย ปรีเปรม
3. Water Turbine
compressor
Gas Turbine
รศ.ดร.สมหมาย ปรีเปรม
4. i
4.3.4 Turbines
w
Turbine
 Common assumptions for turbine:
 SSSF e
 Adiabatic (q = 0)
 Neglect kinetic and potential energies
 Turbine energy balance (Single Stream)
Vi 2 Ve2
q  (hi   zi g ) w  (he   ze g ) J / kg
2 2
w (hi  he ) J / kg
รศ.ดร.สมหมาย ปรีเปรม
5. 4.3.4 Compressors
 Compressor: Shaft work  Increase pressure & enthalpy of
vapor or gas
 Often like turbine run in reverse
 Used in
 Gas power plants (e.g., gas turbine engine)
 Turbo propulsion systems (e.g., turbofan and turbojet engines).
 Industry (e.g., supply high pressure gas)
 Working Fluids  Gas, Vapor. Not Liquid (pump used)
รศ.ดร.สมหมาย ปรีเปรม
6. Wc
Reciprocating Compressor
รศ.ดร.สมหมาย ปรีเปรม
7. 4.3.4 Compressors
 Common assumptions for compressor:
 SSSF
Compressor
 Adiabatic (q = 0) w
 Neglect kinetic and potential energies
 Compressor energy balance
Vi 2 Ve2
q  (hi   zi g ) w  (he   ze g ) J / kg
2 2
w (hi  he ) J / kg
รศ.ดร.สมหมาย ปรีเปรม
8. 4.3.5 Heat Exchangers
 Allows heat transfer from
one fluid to another
without mixing
 Example: Car Radiator
รศ.ดร.สมหมาย ปรีเปรม
9. 4.3.5 Heat Exchangers
 Common Assumptions
 SSSF
 no work involve, wcv=0
 Externally adiabatic
 Neglect kinetic and
potential energies
Heat exchanger
รศ.ดร.สมหมาย ปรีเปรม
10. Heat Exchanger analysis technique 1
Whole Equipment
1. Control Volume over the heat exchanger
1
2. Applied 1st law: 2- inlets & 2- exit
3. No heat transfer out of the heat exchanger
3
4. No work, Change in KE & PE are negligible 4
5. Mass flow rate of each stream (hot stream Heat exchanger
and cold stream) remains unchanged 2
Control Volume
6. Use properties of each fluid
o o Vi 2 o o Ve2
Qcv   m i (hi   zi g ) Wcv   m e (he   ze g )
2 2
o o
 m i hi  m e he Why there is no Q
o o in the equation?
m1 (h1  h2 ) m 3 ( h4  h3 ) It is a heat
รศ.ดร.สมหมาย ปรีเปรม
exchanger, isn’t it?
11. Heat Exchanger analysis technique 2
Superimposed
1. Separated cold out of hot stream.
2. Control Volume over each stream then 1 Control Volume 1
applied 1st law Cold Fluid
3. No work, change in KE & PE are negligible
4. Heat transfer out from hot stream =
Heat transfer into cold stream
5. Mass flow rate of each stream (hot stream 2
and cold stream) remains unchanged Heat Transfer, Qcv
6. Use properties of each fluid
o o Vi 2 o o Ve2 3
4
Qcv  m i (hi   zi g ) Wcv  m e (he   ze g )
2 2 Hot Fluid
o o o
Cold : Qcv  m1 h1 m1 h2  Qcv m1 (h2  h1 ) Control Volume 2
o o o
Hot :  Qcv  m3 h3 m3 h4   Qcv m3 (h4  h3 )
o o
m1 (h1  h2 ) m3 (h4  h3 ) รศ.ดร.สมหมาย ปรีเปรม
12. 4.3.6 Mixing Devices
Mixing water:
m3h3
hot water:
m2h2
Mixing
Cold water: Chambe
m1h1 r
 Combine 2 or more streams
 Common in industrial processes
 Common assumptions
 SSSF
 Adiabatic
 Neglect kinetic and potential energies
รศ.ดร.สมหมาย ปรีเปรม
13. 4.4 Transient (Unsteady) Analysis
 Typically open system not at steady state
 Tank Filling
 Tank Emptying
t2
 Mass Balance:   m
 IN - m
 OUT  dt  mCV (t2 )  mCV (t1)
t1
t2
  E IN  t   E OUT  t   dt  ECV  t 2   ECV  t1 
t1
 Energy Balance: 2
 v gz 
E IN,OUT  t   Q  W  m  h 
   
 2gc gc 
 1 v2 gz 
ECV m  u   
รศ.ดร.สมหมาย ปรี2
เปรมgc gc 
14. 4.4.1 Uniform State Uniform Flow
(USUF)
Uniform State: All properties uniform across system at any instant in time
Uniform Flow: All mass flow properties at each inlet and outlet are uniform
across the stream
Neglect kinetic and potential energies
Mass Balance : ∑mi - ∑me = m 2 – m1
Energy Balance:
Q + ∑mi(hi + ½ Vi2 +zig) = W + ∑me(hi + ½ Ve2 +zeg)
+ [m2(u2+½ V22+zg) – m1(u1+½ V12+z1g)]
Subscripts: i = inlet, e = exit 1 = at time start, 2 = at time end
รศ.ดร.สมหมาย ปรีเปรม
15. 4.4.2 Tank Filling
 Simplest USUF analysis:
No outlet flow

 Assume adiabatic, W =0, KE, PE = 0
Mass Balance : ∑mi - ∑me = m2 – m1
mi = m2 – m1
Energy Balance:
Q + ∑mi(hi + ½ Vi2 +zig) = W + ∑me(he + ½ Ve2 +zeg)
+ [m2(u2+½ V22+z2g) – m1(u1+½ V12+z1g)]
mihi = m2u2– m1u1
Subscripts: i = at inlet, e = at exit, 1 = at time start, 2 = at time end
What is the equation, if
รศ.ดร.สมหมายunload
ปรีเปรม mass from the tank
16. Conservation of Examples are follow
Mass and Energy
can be applied
everywhere in the
whole wide world
End of Chapter 4
รศ.ดร.สมหมาย ปรีเปรม