Contributed by:
Turbines, Compressors, Heat exchangers
1.
Chapter 4
The First Law of
Control Volume:
Part 3
Assoc.Prof.Dr.Sommai
Priprem
รศ.ดร.สมหมาย ปรีเปรม
2.
4.3.4 Turbines
Turbine: Enthalpy Shaft work
Used in
Almost all power plants
Some propulsion systems (e.g.,
turbofan and turbojet engines)
Working Fluid:
Liquids (e.g., hydro power plants)
Vapors (e.g., steam power plants)
Gases (e.g., gas power plants) w
Turbine
รศ.ดร.สมหมาย ปรีเปรม
3.
Water Turbine
compressor
Gas Turbine
รศ.ดร.สมหมาย ปรีเปรม
4.
i
4.3.4 Turbines
w
Turbine
Common assumptions for turbine:
SSSF e
Adiabatic (q = 0)
Neglect kinetic and potential energies
Turbine energy balance (Single Stream)
Vi 2 Ve2
q (hi zi g ) w (he ze g ) J / kg
2 2
w (hi he ) J / kg
รศ.ดร.สมหมาย ปรีเปรม
5.
4.3.4 Compressors
Compressor: Shaft work Increase pressure & enthalpy of
vapor or gas
Often like turbine run in reverse
Used in
Gas power plants (e.g., gas turbine engine)
Turbo propulsion systems (e.g., turbofan and turbojet engines).
Industry (e.g., supply high pressure gas)
Working Fluids Gas, Vapor. Not Liquid (pump used)
รศ.ดร.สมหมาย ปรีเปรม
6.
Wc
Reciprocating Compressor
รศ.ดร.สมหมาย ปรีเปรม
7.
4.3.4 Compressors
Common assumptions for compressor:
SSSF
Compressor
Adiabatic (q = 0) w
Neglect kinetic and potential energies
Compressor energy balance
Vi 2 Ve2
q (hi zi g ) w (he ze g ) J / kg
2 2
w (hi he ) J / kg
รศ.ดร.สมหมาย ปรีเปรม
8.
4.3.5 Heat Exchangers
Allows heat transfer from
one fluid to another
without mixing
Example: Car Radiator
รศ.ดร.สมหมาย ปรีเปรม
9.
4.3.5 Heat Exchangers
Common Assumptions
SSSF
no work involve, wcv=0
Externally adiabatic
Neglect kinetic and
potential energies
Heat exchanger
รศ.ดร.สมหมาย ปรีเปรม
10.
Heat Exchanger analysis technique 1
Whole Equipment
1. Control Volume over the heat exchanger
1
2. Applied 1st law: 2- inlets & 2- exit
3. No heat transfer out of the heat exchanger
3
4. No work, Change in KE & PE are negligible 4
5. Mass flow rate of each stream (hot stream Heat exchanger
and cold stream) remains unchanged 2
Control Volume
6. Use properties of each fluid
o o Vi 2 o o Ve2
Qcv m i (hi zi g ) Wcv m e (he ze g )
2 2
o o
m i hi m e he Why there is no Q
o o in the equation?
m1 (h1 h2 ) m 3 ( h4 h3 ) It is a heat
รศ.ดร.สมหมาย ปรีเปรม
exchanger, isn’t it?
11.
Heat Exchanger analysis technique 2
Superimposed
1. Separated cold out of hot stream.
2. Control Volume over each stream then 1 Control Volume 1
applied 1st law Cold Fluid
3. No work, change in KE & PE are negligible
4. Heat transfer out from hot stream =
Heat transfer into cold stream
5. Mass flow rate of each stream (hot stream 2
and cold stream) remains unchanged Heat Transfer, Qcv
6. Use properties of each fluid
o o Vi 2 o o Ve2 3
4
Qcv m i (hi zi g ) Wcv m e (he ze g )
2 2 Hot Fluid
o o o
Cold : Qcv m1 h1 m1 h2 Qcv m1 (h2 h1 ) Control Volume 2
o o o
Hot : Qcv m3 h3 m3 h4 Qcv m3 (h4 h3 )
o o
m1 (h1 h2 ) m3 (h4 h3 ) รศ.ดร.สมหมาย ปรีเปรม
12.
4.3.6 Mixing Devices
Mixing water:
m3h3
hot water:
m2h2
Mixing
Cold water: Chambe
m1h1 r
Combine 2 or more streams
Common in industrial processes
Common assumptions
SSSF
Adiabatic
Neglect kinetic and potential energies
รศ.ดร.สมหมาย ปรีเปรม
13.
4.4 Transient (Unsteady) Analysis
Typically open system not at steady state
Tank Filling
Tank Emptying
t2
Mass Balance: m
IN - m
OUT dt mCV (t2 ) mCV (t1)
t1
t2
E IN t E OUT t dt ECV t 2 ECV t1
t1
Energy Balance: 2
v gz
E IN,OUT t Q W m h
2gc gc
1 v2 gz
ECV m u
รศ.ดร.สมหมาย ปรี2
เปรมgc gc
14.
4.4.1 Uniform State Uniform Flow
(USUF)
Uniform State: All properties uniform across system at any instant in time
Uniform Flow: All mass flow properties at each inlet and outlet are uniform
across the stream
Neglect kinetic and potential energies
Mass Balance : ∑mi - ∑me = m 2 – m1
Energy Balance:
Q + ∑mi(hi + ½ Vi2 +zig) = W + ∑me(hi + ½ Ve2 +zeg)
+ [m2(u2+½ V22+zg) – m1(u1+½ V12+z1g)]
Subscripts: i = inlet, e = exit 1 = at time start, 2 = at time end
รศ.ดร.สมหมาย ปรีเปรม
15.
4.4.2 Tank Filling
Simplest USUF analysis:
No outlet flow
Assume adiabatic, W =0, KE, PE = 0
Mass Balance : ∑mi - ∑me = m2 – m1
mi = m2 – m1
Energy Balance:
Q + ∑mi(hi + ½ Vi2 +zig) = W + ∑me(he + ½ Ve2 +zeg)
+ [m2(u2+½ V22+z2g) – m1(u1+½ V12+z1g)]
mihi = m2u2– m1u1
Subscripts: i = at inlet, e = at exit, 1 = at time start, 2 = at time end
What is the equation, if
รศ.ดร.สมหมายunload
ปรีเปรม mass from the tank
16.
Conservation of Examples are follow
Mass and Energy
can be applied
everywhere in the
whole wide world
End of Chapter 4
รศ.ดร.สมหมาย ปรีเปรม